If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17y^2+8y=0
a = 17; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·17·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*17}=\frac{-16}{34} =-8/17 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*17}=\frac{0}{34} =0 $
| 6r+7=36r+13 | | 2t^2-13t+18=0 | | X=7*6n+24(3-2)+4n | | 4.9x^2-14x-1.8=0 | | 3.50*x+812=2450 | | 8(x-5)-9x=6x-7(x+2) | | 2x+6−x+4=1 | | 49=9+t | | y=0.65×+5 | | 6x+x(x-8)=59 | | 2(-10+x)=-6+4(x-9) | | y+3÷2=4 | | 6x+-6x=98 | | 8(2n-8)=4(7+2n)-4 | | 32.2=230*0.07t | | -2x(x+1)+3x=14 | | -2(5x+7)+12x=4 | | 3(7s+2)-9s=3(4s+1)-6 | | -8(x-3)=-5(x+3) | | –5x–10=2–(x+4) | | 22=4+r | | p+8/6=p/7 | | 9+4(x-3)=4-8(x-7) | | 7(9+k)=84-2k | | k+10/k=6/10 | | 3v^2-6v+2=3 | | 1/5(5x+3)-1/4(x+5)=4 | | x²-10x=119 | | -4(x-10)=-2(4+x) | | x+6x+(x-8)=59 | | 6(4x-6)=3(8x+7) | | 0=-4.1791x+89.889 |